Simplifying Vaccine Science

Ashley Beale, M.P.H. Program Coordinator

Rachel Walker, M.P.H. Program Coordinator

THE IMMUNIZATION PARTNERSHIP

Vision

A community protected from vaccine preventable diseases

Mission

To eradicate vaccine-preventable diseases by educating the community, advocating for evidence-based public policy, and supporting immunization best practices

ACKNOWLEDGEMENTS

This presentation is made possible through partnerships and funding from the following:

- Cizik School of Nursing at UTHealth
- > The Ellwood Foundation
- > The Harry S. and Isabel C. Cameron Foundation
- > Episcopal Health Foundation
- The Florence and William K. McGee Jr. Family Foundation
- > The Cullen Trust for Health Care
- > Houston Endowment
- Methodist Healthcare Ministries of South Texas
- John P. McGovern Foundation
- > Rockwell FundInc

DISCLOSURE AND DISCLAIMER

- The speakers and planning committee have disclosed no conflicts of interest
- This presentation is for educational use only and does not constitute medical or legal advice

AGENDA

Vaccine History

Vaccine Development

COVID-19 Vaccines Overview

Ingredients & Technology

COVID-19 Vaccine Expectations

Helpful Resources

Vaccine History

RUBELLA (German measles) — by year, United States, 1966-1993

Decline of Rubella cases in the US, 1966 – 1993.

UK immunization advocacy poster on Diphtheria, 1960.

Child receiving polio vaccine in Sweden, 1957.

Vaccine Development

STAGES OF VACCINE DEVELOPMENT

Phase 1 Clinical Trials

Pre-Clinical Stage

Review & Licensure

Phase 3 Clinical Trials

Phase 2 Clinical Trials

Exploratory Stage

- Basic laboratory science
- Researchers try to **identify antigens** that may help to prevent or treat a disease (either a virus or bacteria)
- Test their ideas to find a vaccine candidate
- 2 4 years (but may take longer)

Pre-Clinical Stage

- Before a vaccine can be tested in humans, safety and efficacy tests are done using:
 - Tissue cultures
 - Cell cultures
 - Animals (mice, monkeys)
- Helps researchers understand the immune response created by the vaccine

• 1 - 2 years (but may take longer)

Placebo-Controlled Vaccine Trials

(Phase 1 Clinical Trials, Phase 2 Clinical Trials and Phase 3 Clinical Trials)

- Clinical trials for vaccines are configured to include both a **control group** and an **experimental group** this is essential for comparison.
- Control group receives a placebo (often a vaccine that is already approved or saline solution) and the experimental group receives the vaccine being tested.
- The control and experimental groups are made up of similar participants (age, race, health status, sex) so researchers can compare and determine the true effects of the vaccine.
- Studies are **randomized** and **double-blinded** (meaning neither researchers of participants know which group they are in) **to avoid bias.**

Phase 1 Clinical Trials

- Begin testing the vaccine in healthy adults
- Studies start small with 20 100 participants
- Focused on answering 2 questions:
 - 1. Is the vaccine safe?
 - 2. Is the vaccine **effective**? (does it generate the expected immune response)
- 1 − 2 years

Phase 2 Clinical Trials

- Phase 2 includes more study participants (several 100) those with different health statuses, demographic backgrounds, and at risk for acquiring disease are included.
- Participants may receive the vaccine (of varying doses) or a placebo as part of randomized-controlled studies.
- Focused on vaccine safety among diverse populations, short-term side
 effects, and understanding the vaccine's immune response, including dosing.
- 2+ years

Phase 3 Clinical Trials

- Phase 3 includes hundreds of thousands of people experimental group (receive the vaccine) and control group (receive a placebo).
- The study is **double-blinded** (for researchers AND participants)
- Goal is to assess vaccine safety in a large group of people and identify common side effects and any rare side effects.
- **Vaccine efficacy** is tested does the vaccine **prevent disease**, does it **prevent** infection, does it lead to production of antibodies?
- Can last several years

Review & Licensure

- After successful Phase 3 trials, a vaccine developer submits a Biologics License
 Application to the FDA for review
- FDA reviews the data from a vaccine's clinical trials to determine whether the vaccine has been shown to be both <u>safe</u> and <u>effective</u>.
- Manufacturing processes are also reviewed to ensure vaccine quality and consistency
- FDA will approve (license) the vaccine for use in the United States if the benefits and of the vaccine outweigh any risks.

COVID-19 Vaccines Overview

- EUA
approval:
Dec. 11,
2020

- 2 doses

- EUA
approval:
Dec. 18,
2020

- 2 doses

- EUA
approval:
Feb. 11,
2021

- 1 dose

Factors of Vaccine Development Speed

- 1. Global public health threat #1 priority
 - Unprecedented number of vaccine candidates / public and private funding
 - Included "Operation Warp Speed"

- 2. Decades of research informed work for COVID-19 vaccines:
 - Other coronaviruses (SARS and MERS)
 - Previous vaccine research using mRNA technology for other viruses such as Zika, rabies, and influenza

Ingredients & Technology

What's in the Pfizer/BioNTech Vaccine?

- mRNA Provides instructions for our body on how to make a viral protein that triggers an immune response.
- Lipids (fats) Protect the mRNA & helps mRNA slide inside of the cell
- Salts Help balance acidity in the body
- Sugar (sucrose) Helps molecules maintain their shape during freezing

Pfizer/BioNTech Vaccine Ingredients

Active Ingredient	 mRNA coding for a form of the spike protein of SARS-CoV-2
Lipids (fats)	 (4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate) 2[(polyethylene glycol)-2000]- N,N-ditetradecylacetamide 1,2-distearoyl-sn-glycero-3-phosphocholine cholesterol
Salts	 potassium chloride monobasic potassium phosphate sodium chloride dibasic sodium phosphate dihydrate
Other	• sucrose

What's in the Moderna Vaccine?

- mRNA Provides instructions for our body on how to make a viral protein that triggers an immune response.
- **Lipids (fats)** Protect the mRNA & helps mRNA slide inside of the cell
- Acids, Acid Stabilizers, & Salts work together to maintain the stability of the vaccine after production
- Sugar (sucrose) Helps molecules maintain their shape during freezing

Moderna Vaccine Ingredients

Active Ingredient	 mRNA coding for a form of the spike protein of SARS-CoV-2
Lipids (fats)	 SM-102 polyethylene glycol [PEG] 2000 dimyristoyl glycerol [DMG] cholesterol 1,2-distearoyl-sn-glycero-3-phosphocholine [DSPC]
Salts	 sodium chloride trisodium citrate dehydrate Citric acid monohydrate
Other	 tromethamine tromethamine hydrochloride acetic acid sucrose

How mRNA Technology Works

VACCINE

messenger RNA (mRNA) from virus's genetic code is injected into patient.

PRODUCE

The T-cells and antibodies will remember how to fight the virus, and protect you from getting sick if you are exposed in the future.

VIRUS

The mRNA instructs human cells to create part of the SARS-CoV-2 breaks down mRNA

T - cells

PROTECT

Our immune system reacts to the protein (because it doesn't belong) by producing antibodies and activating T-cells to destroy the spike proteins.

virus called the "spike" protein. The cell gets rid of the protein once it instructions.

Image adapted from: https://www.michigan.gov/documents/coronavirus/2020_MDHHS_COVIDVa ccine_Infograph_3.0_710373_7.pdf

Antibodies

What's in the J&J Vaccine?

- Adenovirus vector is used as the vehicle to introduce the vaccine (virus cannot replicate)
- Acid & acid stabilizers work together to maintain the stability of the vaccine after production
- Salt help balance acidity in the body

J&J Pause & Ongoing Safety Monitoring

The CDC and FDA recommended a temporary pause of the J&J vaccine on April 13th following several reports of a **rare blood clot condition**, thrombosis with thrombocytopenia syndrome (TTS), 1-2 weeks following vaccination.

- As of June 21, 2021, **36 cases of TTS (submitted to VAERS)** have occurred among the more than 12 million doses of the J&J in the United States. All cases occurred among women between 18 59 years.
- Pause was lifted on April 23rd after review of all available data showed that the J&J/Janssen COVID-19 Vaccine's known and **potential benefits outweigh its known and potential risks.**
- Women 50 and younger should be aware of this rare but adverse event risk.

J&J Vaccine Ingredients

Active Ingredient	 Recombinant, replication-incompetent adenovirus type 26 expressing the SARS-CoV-2 spike protein
Salts	 potassium chloride monobasic potassium phosphate sodium chloride dibasic sodium phosphate dihydrate
Other	 ethanol polysorbate-80 acetic acid Sucrose

Image adapted from: https://www.nebraskamed.com/COVID/you-asked-weanswered-are-covid-19-vaccine-ingredients-public

How AdVac® Technology Works

VACCINE

An adenovirus vector (a carrier) from an antigen's genetic code, used to mimic the virus, is injected into the patient.

PRODUCE

The T-cells and antibodies will remember how to fight the virus, and protect you from getting sick if you are exposed in the future.

PROTECT

Our immune system reacts to the antigen (because it doesn't belong) by producing antibodies and activating T-cells.

What's the latest on the Novavax Vaccine?

- 96% efficacy against the original coronavirus strain in the UK
- 89% efficacy against B.1.1.7 variant
- 49% efficacy against B.1.351 variant (South Africa trial)
- Company working on an a version tailored to B.1.351 variant
- Results of Phase 3 trials (30,000 participants): 90.4% efficacy in preventing symptomatic COVID-19

Novavax Vaccine Details

- Protein-based vaccine
- Includes harmless proteins of the virus that causes
 COVID-19
- 2 doses, one month apart
- Storage: basic refrigeration

How Protein-Based Technology Works

GROWING SPIKE PROTEINS

Modified spike gene is inserted into a baculovirus, and infects moth cells. Infected cells produce spike proteins.

PRODUCE

Our immune system reacts to nanoparticles by producing T-cells and antibodies. They will remember how to fight the virus upon future exposure.

NANOPARTICLES

Spike proteins are harvested from moth cells and assembled into nanoparticles. Nanoparticles mimic coronavirus, but do not replicate.

VACCINE

Vaccine includes spike nanoparticles. The compound attracts immune cells to site of injection, which causes a strong response to nanoparticles.

COVID-19 Vaccine Expectations

Common Side Effects

On the arm where you got the shot:

- Pain
- Redness
- Swelling

Throughout the rest of your body:

- Tiredness
- Headache
- Muscle pain
- Chills
- Fever
- Nausea

Tips for Pain or Discomfort

To reduce pain and discomfort where you got the shot

- Apply a clean, cool, wet washcloth over the area.
- Use or exercise your arm.

To reduce discomfort from fever

- Drink plenty of fluids.
- Dress lightly.

Things to Remember

- Considered fully vaccinated
 - 2 weeks after second shot for Pfizer & Moderna
 - 2 weeks after single-dose J&J

 Once fully vaccinated, you may be able to do things that had to stop because of pandemic

Keep taking precautions after being fully vaccinated

Helpful Resources

- CDC, Understanding How COVID-19 Vaccines Work.
 https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/how-they-work.html
- PubChem, World's largest collection of freely accessible chemical information. https://pubchem.ncbi.nlm.nih.gov/
- Children's Hospital of Philadelphia, Vaccine Science.
 https://www.chop.edu/centers-programs/vaccine-education-center/vaccine-science
- World Health Organization, Science in
 5. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/media-resources/science-in-5

Follow Us!

- 5
 - @immunize_USA
- A
 - @immunizeUSA
- 0
- @immunize_USA
- in

The Immunization Partnership

Sign up for alerts: www.immunizeUSA.org

Protected Together

#VACCINESWORK

References:

- 1. https://www.historyofvaccines.org/timeline/all
- 2. https://www.cdc.gov/vaccinesafety/ensuringsafety/history/index.html
- 3. https://www.fda.gov/vaccines-blood-biologics/development-approval-process-cber/vaccine-development-101
- 4. https://microbiologysociety.org/why-microbiology-matters/what-is-microbiology/microbes-and-the-human-body/immune-system.html
- 5. https://www.historyofvaccines.org/content/articles/vaccine-development-testing-and-regulation
- 6. https://www.chop.edu/centers-programs/vaccine-education-center/making-vaccines/process-vaccine-development
- 7. https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vsd/index.html
- 8. https://www.fda.gov/media/143890/download
- 9. https://news.uchicago.edu/story/how-were-researchers-able-develop-covid-19-vaccines-so-quickly
- 10. https://www.houstonmethodist.org/blog/articles/2020/dec/how-was-the-covid-19-vaccine-developed-so-fast/
- 11. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mRNA.html
- 12. https://www.hackensackmeridianhealth.org/HealthU/2021/01/11/a-simple-breakdown-of-the-ingredients-in-the-covid-vaccines/
- 13. https://www.nebraskamed.com/COVID/you-asked-we-answered-are-covid-19-vaccine-ingredients-public
- 14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597572/
- 15. https://www.cdc.gov/vaccines/covid-19/hcp/mrna-vaccine-basics.html
- 16. https://www.michigan.gov/documents/coronavirus/2020 MDHHS COVIDVacci ne Infograph 3.0 710373 7.pdf
- 17. https://www.vcuhealth.org/news/covid-19/johnson-and-johnson-vaccine-how-is-it-different
- 18. https://www.fda.gov/news-events/press-announcements/joint-cdc-and-fda-statement-johnson-johnson-covid-19-vaccine
- 19. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/JJUpdate.html
- 20. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html

- 21. https://www.janssen.com/emea/emea/janssen-vaccine-technologies
- 22. https://www.nytimes.com/interactive/2020/health/novavax-covid-19-vaccine.html
- 23. https://www.nih.gov/news-events/news-releases/us-clinical-trial-results-show-novavax-vaccine-safe-prevents-covid-19
- 24. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/how-they-work.html
- 25. https://www.cnbc.com/2021/01/29/covid-vaccine-comparing-jnj-pfizer-moderna-novavax.html
- 26. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/expect/after.html
- 27. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/fully-vaccinated.html

THANK YOU!

